
PriiTHE UNIVERSITY
OF WISCONSIN
madlison wisconsin

DDC

~: '~ t MAY 1519ý

TISIA 8

MATHEMATICS RESEARCH CENTER



MATHEMATICS RESEARCH CENTER, UNITED STATES ARMY

THE UNIVERSITY OF WISCONSIN

Contract No.: DA-11-022-ORD-2059

POWER SERIES WHOSE PARTIAL SUMS
HAVE FEW ZEROS IN AN ANGLE

J. Korevaar and T. L. Mc Coy

MRC Technical Summary Report #387
April 1963

Madison, Wisconsin



ABSTRACT

Let Z an zn be a power series different from a polynomial, s n(z)

its partial sum of order n. Let vn( 6) denote the minimum of the number

of zeros of s in any angle of opening 6 and vertex 0. It has beenn

known for several years that if v n(6) = o(n) for some 6> 0, then

the power series must represent an entire function of order zero. In

the present paper it is assumed that vn( 6) < Ana nn .- n =l, 2,... for

some 6> 0 and 0 <a <1 . A harmonic measure technique is used to

estimate the growth of the entire function in this case. Taking A > I

when a =0 it is shown that a =O{exp(-E n 2-a)} , with a > I/DA andn

log 1 0 Q = 10016. Apart from the value of E this estimate for an is

best possible. The proof shows also that if an # 0 and n > no there

is a coefficient a # 0 with p < GAn . Thus in the case of a zero
n-p

free angle the power series can have no unbounded gaps, and a = 0{e~xp ( -R n1 } .
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1. Introduction. Let

00

(1.1) Z a n

0

be a formal power series different from a polynomial,

n

(1.2) sn(z) Z a akzk

0

its partial sum of order n. We denote by

(1.3) V n(6)

the minimum of the number of zeros of s in any angle of opening 6 andn

vertex 0.

If for some 6 > 0

(1.4) Vn (6) = o(n) as n- oo,

then it follows from the work of Jentzsch [ 6] , Carlson [1, 2] , Rosenbloom
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[9, 10] and the first author [ 7] that the series (1. 1) represents an entire

function of order zero. However, until very recently it was not known what the

implications are of restrictions stronger than (1. 4). In this paper we assume

thatforsome 6 >0 andan a with 0< a<l

(1.5) v(6) < Ano, n =l,2,n -- , n= , ,..

Not long ago Hedstrom and the first author [ 5] made a very detailed
00

study of the zeros of the partial sums of the special series Z exp( -np)zn

0 2-
with I p < 2. They found that in this case v n(6) -c( 6, P)n , and

conjectured that this is about as small as the v n(6) can be for power series

with coefficients of comparable size.

However, it took the ingenuity and the powerful techniques of Ganelius

[4] to prove, during a 1962 analysis conference at Wisconsin, that (L 5)

implies an estimate of the form

(1.6) a =O{exp(-En)} (E >0)n

In particular, if every partial sum sn has a zero free angle of fixed opening

6 > 0 and vertex 0, then a = 0{ exp(-E n )}, a result heretofore knownn

only in a few special cases [ 3, 8]

In the present note we combine Ganelius' ideas with a harmonic measure

technique used in the second author's (unpublished) Ph. D. thesis [8]. We
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thus obtain a somewhat more transparent proof of (1. 5)-p (1. 6), and are able

to estimate * in terms of A and 6 (taking A > 1 when a = 0):

(1.7) f , with logQ==l0 100/6

(Ganelius' proof, which makes use of Vitali's theorem, does not give an

explicit bound for E ).

Our proof also shows that if ak is a rather large coefficient (that is,

"a coefficient corresponding to a vertex of the Newton polygon), then there is

"a rather large coefficient ak-p such that 0 < p < OAk whenever .k is

sufficiently large. In particular, if the partial sums have a zero free angle of

fixed opening and vertex 0 the power series can not have unbounded gaps.

2. Outline of the proof (special case). We set

(2.1) Ia I exp{-f(n)}

2-a•
and assume in this section that f(x) resembles x to the extent that

(2.2) f f C, 0 < f"(x)J, , xf"(x)To o

Since

12
f(n - k) = f(n) - kf'(n) + 1 Of' 1(n - 9k), 0< 0<1

2S
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with small f", we write for fixed n

nS n(Z) Z exp{(-fln -k) + 1 k )z n-k
k=O n

n
=zn ef(n) Z bk{efl(n)/z}k

k-=O

where

(2.3) bk =exp{-f(n-k) +f(n) -kf'(n) +IPk.

We now consider the auxiliary polynomial

n

(2.4) S(z) b • zk =ef (n)nf'(n) zn(efl(n) /z)on
0

This polynomial has the same minimum number of zeros in an angle of

opening 6 and vertex 0 as s ; by rotation we may assume that the

number of zeros of S in the angle I arg z I< 1 6 is bounded by Anc'

The coefficients of S are of course much more tractable than

those of s . By our assumptions f"( n - Gk) > f"( n) for all k, and
n

f" n -9k) < f"( n) < 2f"( n) at least for k < I n. Thus, setting

f"(n) = X,
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<exp(-- k 2 ) < 1 for all k<n
(2.5) lbk I = 1exp[-k 2f"(n- Ok)]{

2 1
> exp(-Xk 2 for k<

Besides S we consider a polynomial T obtained by removal of the

zeros z1,... z in a sufficiently large sector Iarg zI < 16, I < R

N(2.6) T(z) = s(z)/ 1 (z-z).
• 1

From (2. 5) it is easy to obtain an upper bound for log I S( z) I in

terms of X , and hence an upper bound for log IT( z) I in terms of x and

N.

We then introduce a holomorphic branch of log T(z) in the sector

Iarg z I <16 z Izi < R. From the known bound on its real part and a

bound at z = 1/3 we immediately obtain a bound on I log T(z) I in terms

of X , N and 6 which is valid throughout the smaller region I arg z I < 6,
-4

1/3 < IzI < -R.

Next we apply a harmonic measure argument to log I log T(z) I in

the smaller region. Using the relative smallness of the function on the

arc IzI =1/3 we obtain an estimate for Ilog T(x) I on a segment of the

positive real axis. From this we obtain an estimate for log I S(x) I in

terms of Xv N and 6 on the segment 0O<x < R/4.
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We finally apply a harmonic measure argument to log IS( z) I in

the domain bounded by the circle I z I = R/4 and the segment 0 < x < R/4

of the real axis. Using our estimates on the two parts of the boundary we

obtain an improved estimate for logI S( z) I on circles of moderate size.

The latter estimate gives a new upper bound for I bk zkI which

depends on X in such a way that comparison with the lower bound known

from (2. 5) leads to a lower bound for X = f"(n), and hence for f(n).

3. The general case. In the case of "arbitrary" coefficients a
n

the beginning of the proof has to be refined. We may of course assume

that Z anzn represents an entire function ( so that (1/n) log I l/a nI- - o), and

not a polynomial. We now introduce the Newton polygon g, that is,

the maximal convex minorant of the function f = log 11/al . We have

f > g, and f(n) = g(n) for every n which corresponds to a vertex of

the polygon; since f( n) /n - wo there are infinitely many vertices.

The derivative g' will be piecewise constant and non-decreasing;

we define g'(n) = g'(n-). We note that g'(x)Too (or else g(x) = O(x)

and hence f(n) = O(n) on the sequence of vertex indices n).

From here on n will always correspond to a vertex of the Newton

polygon. Using an idea of Ganelius [ 4] we define pn as the smallest

positive integer such that
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(3.1) g'(n) -g'(nr-pn ) > (n > nT)

n - p will also be a vertex index. We remark that I/p corresponds to the

quantity f"(n) in.Section 2.

Lemma I. If

(3.2) Pn < Cna (0 < a <)

for all vertex indices n > n2 , then

(3.3) f(x) > g(x) > x 2a/6C (x > x,)

Proof. Set Pn Pn and let p(i) be the pm which corresponds
ni n

to the vertex index m =n 1 )- p (il-) Then= . n - . -in •

(1) _(J))>
g'(n) -g'(n-Pp "" >p

n ni

hence if J =na /ZC] and n> 2

g'(n) >g'(.(.n) + [nl 1f2C]> nla/2C (n>_n 3 )

"Now g'(x) >_g9(n-pn) for n-pn < x < n, andthus

g'(x) > x 'a/3C (x > x);

integration gives (3. 3)
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We conclude from this lemma that if

n =p P/no - 0

there is nothing to prove. We assume therefore that

lim sup (jn =npn/n) =K > 0

(which is always true when a = 0). If K is infinite we will only look at

those vertex indices n for which n-> ý k for all vertex indices k < n.

If K is finite we restrict ourselves to those n for which Ln > 3 K/4.

In both cases there will be an integer no > 0 such that

(3.4) 11n >- ( /3) ýLk

whenever the special vertex index n is > n 0 and nO < k < n. It

follows that for our sequence of special vertex indices n ,

(3.5) P = P (n 2 1 3) pk whenever n 0ok <-n

Using the notation of the above proof we will have

g'(n) -g'(n-t) >j whenever t> p(n) "s Pn
n n

By (3. 5) the inequality for t is certainly satisfied if t > (3/2)pj or

j _ Zt/3p (and n-t > no) , hence
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(3.6) g'(n) -g'(n-t) > [Zt/3p] whenever t < n-no0

We now introduce the auxiliary polynomial
n

(3.7) S(z) =E bkz =e z snnn(e /z)
0

where n is a special vertex index; this time

(3.8) bk =exp{-f(n-k) + g(n) -kg'(n) +ipk}

As before we may assume that the number of zeros of S in the angle

arg zl< 1 6 is bounded by Anc . Note that Ib0 = 1; dividing S(z) by

b0 we may assume that b0 = .

Since f > g and g is convex

(3.9) b kl<exp{-g(n-k)+g(n)-kg'(n) <1 forall k < n

Setting iUp a X we have by (3. 6)

k
g(n-k)-g(n) +kg'(n) = f {g'(n)-g'(n-t)}dt

0

k k

> f [ZXt/3]dt >*f (?),t/3 - l)dt =(X/3)k -k
0 0

provided k < n-n 0 . For k > n-n 0 we have the same lower bound as

for k = n - n. , hence a short computation shows that we can use the lower

bound 1 k2 -k for all k < n provided we take n > 16nO, say. On the
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otherhand, since g'(n) -g'(n-t) <1 for t <p

f(n-p)-g(n) + pg'(n) =g(n-p)-g(n) + pg'(n)

p
= f g'(n) -g'(n-t)}dt < p.

0

Thus for n > 16n 0 ,

(3I0< exp(- X k2 +k) for all k < n,

(3.10)

lb I > e-p
p -

From here on the proof goes as in Section 2 ; we will turn to the

details after we formulate some auxiliary results.

4. Two lemmas for angular regions. We first prove an analog of the

Borel-Carath6odory inequality which can be used in a sector.

Lemma 2. Suppose that F is holomorphic in the sector

Jargz(<1 y< , < •, zI<2'2/Yr,

and that

ReF(z) < A

there. Then in the smaller region
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larg z1 <_ -Y, < a <_ zl< r

one has the inequality

IF(z) I< IF(a)I + 8{A+ IF(a) I) (r/a)'I/Y

provided r/a is sufficiently large (r/a > 30/Ir will do).

It will be sufficient to sketch the proof for the case y - ir We

proceed as in [11, Section 5. 5]. Assume that F(a) = 0. We may then assume
that A > 0. It follows that the function

G(z) - F(z)
2A ZA- F(z)

will be holomorphic for I arg zi < ir , 0 < IzI < 2r, and bounded by 1.

Hence since it vanishes for z = a, the maximum modulus theorem shows

that in this sector

IG(z) 1<ai Zr+a
z-a - 2r-a'

I 1

provided r/a > . Thus in the region larg zI < L Tr, a < IzI < r , where24
lz-a l/z+aa is maximal at z =reiir/4 P

G(z)I< re 4-a Zr+a
I reiir/4a r-a

and if r/a > 30 the right hard side is certainly < 1 - aI4r.

Expressing F in terms of G we find that



-12- #387

IF(z) I< Ar/a

The general case easily follows by applying the preceding to F( z) - F( a)

We next estimate some harmonic measures.

Lemma 3. Let D be the domain

iB 11
larg zj< y < 0< a < IzI < 2yl~r

and let q'(pe ) be the harmonic measure of the arc I z I = a, 4(pe ) that

of the arc I-zI2 / r relativeto D. Then for 2Yinra < p < r,

V(p) >_ 1-(a/p) I"Y, ;(peie) <_ 2lpl2r)w/y

To prove these results it is again sufficient to consider the case

y = wr. One easily finds that for the rotated domain 0 < arg z <ar,

a <4zl< R ,

v(pe i) = (alp)n _(ap/R )n A sin n 0
n=l,3,... 1- a2n /Rn

40

$(pe l) = ZpR)n a2-1Pin n - sinne
n=l, 3,... 1- a n/R 2n M
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1

One then estimates the first term for 0"= w ir, as well as the remainder

after the first term.

5. Estimates for log I sI (general case). We follow the outline

given in Section 2, but use the polynomial S given by (3.7) and the

polynomial T derived from it by (2. 6). We begin with certain

Preliminary estimates for log Isi I * By (3.10) ,

[Sl•+8)l• •exp{-•-Xkk+ (r-+)k}
0

•o

ISe QP+10 ÷<IZ/X exp{ -L Xlk2(- 1 +1)/k 1

00

_exp{(a. +l)/2i {1 + l exp+X X 2 )dx}
.00

={l+2(r/Xl)*}exp{((a+. 2/). X

Thus, remembering that X = l/p < 1, and taking a- > 1,

(5.1) logIS(z)I< p(or+2)2 for IzI< e'

We now take IzI< I. Then by (3.9)

(5.2) Is(z)-1l< Izl+Izl 2+... = I__
1- IZI
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hence for IzI <_1
i1

S(z)#O and largS(z)I'<•Ir

Preliminary estimates for log ITI . Since the z iin (2. 6) have

absolute value < R the maximum of ITI on the circle I zI = R+ I is

bounded by that of IS I. Thus by the maximum modulus theorem and (5.1),

(5.3) logIT(z)I< plog (8R) for IzI< R+I ,

provided R > 100, say.

We next take I z I < 1/3. Since zC Iz < R we obtain from ( 2. 6)2

and (5.2) that

I(R+I)-N < IT(z)I< 2 o6 N

(5o4)

I argT(z)-argT(l/3)i< -+Ni .

By log T(z) we will denote the holomorphic branch of the logarithm,

throughout thedisc Iz I < and the sector Iarg zI< 16, 0< IzI< R,
022

which has imaginary part between -w and w at z = 1/3 . Then by ( 5. 4)

f Ilog T(z)l< log z + N log(R + 1) + 2w+ Nw

<7+2NlogR for z11_/3.
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We now apply Lemma 2 to log T in our sector, taking a = 1/3 .
1

It is never a restriction to assume that 6 < r ; we can then take r = R.

Thus by (5.5) and (5.3) ,

IlogT(z)t< (7+ ZN logR)

(5.6) +8{plog (8R) + (7+ 2N log R) }(ZR) '/

< (p + N)(ZR)
2 1r/ 6

1 1/ -

throughout the region I arg z I < -16 , 1/3< Iz < R ; in the last step of

(5. 6) we have assumed R > 103 , say.

Estimates for log IT(x) I and log I S(x)I We are now ready to use

Lemma 3 to estimate log logTI . We let D be the domain Iarg z< 1 6,

1/3-< Izi < 2 6 / 1 R/4 < R. Taking 2/3< x < R/4 Lemma 3 shows

that certainly

(5.7) p(x) > w = (2R)" 7/6.

It thus follows from (5. 5) and (5. 6) that

log~iog T(x) I<wlog(7 + 2Nlog R) + (l-w•) log {(p+ N)(2R) 2r/6}
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We will of course use (2. 6) to estimate S(x). Noting that

Ix- z I <_ 2R a short computation shows that for 2/3 < x < R/4

log IS(x) I< logIT(x) I + N log 2R

(5. 8)
< (N' + 1)(p + N)'' (2R) 3-r/6

where w Is given by (5.7). By (5. 2) the answer holds also for

0 < x < 2/3.

Final estimate for log I SI . We again use Lemma 3, now to

estimate log IS I . We take D to be the domain 0 < arg z < 2w ,

0 < I z < R/4. Taking 0 <_p _< R/16 Lemma 3 shows that for all 0

1

$(pe ) < 2(8p/R) .

Thus, estimating the contributions of the real segment (0, R/4) and the

arc IzI = R/4 by (5.8) and (5.1), respectively, we conclude that

Ilog I Pae ie <2 (N•+ 1) (p + N)l (2R) 3"r/6

(5.9)

with w given by (5.7), and R> 10 as well as > 16 p.

6. Conclusion of the proof (general case). We can now complete

the proof of our
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Theorem. Suppose that the partial sums s of a power series- n

an zn have the following property. For every n there is an angle of

fixed opening 6 > 0 and vertex 0 in which s has at most An4' zerosn

(0<a< 1; wetake A> 1 when a=O). Then

(6.1) a =0{exp(-e n ,n

with

(6.2 ) f> 1 100/6
DA 1g 1 0  0/l

Furthermore, if k corresponds to a vertex of the Newton polygon of the

power series and is sufficiently large, then there is another vertex index

k-p with 0 < p < G2Aka.

Final step in the proof. By Cauchy's formula

lb PjI < max0 I S(pei )I

hence the estimate for log IS I in (5. 9) provides an upper bound in

particular for log lb pP I . We compare this upper bound with the lower

bound that follows from (3.10). Collecting the linear terms in p on the

left hand side we obtain the inequality
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2

{-I + log p - Z(8p/R)a log (ZR) } p

(6.3)

< (N'A+ l)(p+ N) I- (ZR) 3w/6

with w given by (5.7) and R > 10 3, R>.16p.

We observe that if p > e one can always choose R so large that

the coefficient of p comes out positive; we do not want R too large, of

course. The choice

ZR = 108 , p=e4

1
makes the coefficient of p greater than •. Hence

(6.4) p < Z(N +1)(p+ N)1.W 10241/6

where w =10W56/6 . Thus either p < N, or else N < p and then

p + N < Zp, hence by a short computation

(6.5) Pn = p < fý max(N, 1), 0=102,w/6,o

We have N < Ano where A> I if a = 0, hence max(N, 1) < Ano

provided n is chosen sufficiently large. Thus by (3.4), taking the special

vertex index n greater than the vertex index k,
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Sa kaa

Pk a k k <- ( 3 /2)k In = (3/2)k aPn/na

(6.6) < (3/2) 0 *Aka

for all vertex indices k > n 0

Lemma I finally shows that for all integers k > k

k2- a
(6.7) log I /a k -f(k) >_ g(k) >. f,

where

8 * 25w 5616(6.8) E -'-,log 10 a -10
* ~90 A 19 *A

It is not hard to see that 90a is bounded by the 0 given in (6. 2)

If k is a vertex index then so is k-pk ; by (6.6) we have

0 < pk < MAk' provided k > no.
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